Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
J Phys Chem B ; 128(13): 3113-3120, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516963

RESUMO

Human ß-cardiac myosin plays a critical role in generating the mechanical forces necessary for cardiac muscle contraction. This process relies on a delicate dynamic equilibrium between the disordered relaxed state (DRX) and the super-relaxed state (SRX) of myosin. Disruptions in this equilibrium due to mutations can lead to heart diseases. However, the structural characteristics of SRX and the molecular mechanisms underlying pathogenic mutations have remained elusive. To bridge this gap, we conducted molecular dynamics simulations and free energy calculations to explore the conformational changes in myosin. Our findings indicate that the size of the phosphate-binding pocket can serve as a valuable metric for characterizing the transition from the DRX to SRX state. Importantly, we established a global dynamic coupling network within the myosin motor head at the residue level, elucidating how the pathogenic mutation E483K impacts the equilibrium between SRX and DRX through allosteric effects. Our work illuminates molecular details of SRX and offers valuable insights into disease treatment through the regulation of SRX.


Assuntos
Simulação de Dinâmica Molecular , Miosinas Ventriculares , Humanos , Miosinas , Coração , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387507

RESUMO

As the genetic landscape of cardiomyopathies continues to expand, the identification of missense variants in disease-associated genes frequently leads to a classification of variant of uncertain significance (VUS). For the proper reclassification of such variants, functional characterization is an important contributor to the proper assessment of pathogenic potential. Several missense variants in the calcium transport regulatory protein phospholamban have been associated with dilated cardiomyopathy. However, >40 missense variants in this transmembrane peptide are currently known and most remain classified as VUS with little clinical information. Similarly, missense variants in cardiac myosin binding protein have been associated with hypertrophic cardiomyopathy. However, hundreds of variants are known and many have low penetrance and are often found in control populations. Herein, we focused on novel missense variants in phospholamban, an Ala15-Thr variant found in a 4-year-old female and a Pro21-Thr variant found in a 60-year-old female, both with a family history and clinical diagnosis of dilated cardiomyopathy. The patients also harbored a Val896-Met variant in cardiac myosin binding protein. The phospholamban variants caused defects in the function, phosphorylation, and dephosphorylation of this calcium transport regulatory peptide, and we classified these variants as potentially pathogenic. The variant in cardiac myosin binding protein alters the structure of the protein. While this variant has been classified as benign, it has the potential to be a low-risk susceptibility variant because of the structural change in cardiac myosin binding protein. Our studies provide new biochemical evidence for missense variants previously classified as benign or VUS.


Assuntos
Cardiomiopatia Dilatada , Feminino , Humanos , Pré-Escolar , Pessoa de Meia-Idade , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos/metabolismo
3.
Bull Exp Biol Med ; 176(3): 324-327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38336971

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) located in the C-zone of myocyte sarcomere is involved in the regulation of myocardial contraction. Its N-terminal domains C0, C1, C2, and the m-motif between C1 and C2 can bind to the myosin head and actin of the thin filament and affect the characteristics of their interaction. Measurements using an optical trap showed that the C0-C2 fragment of cMyBP-C increases the interaction time of cardiac myosin with the actin filament, while in an in vitro motility assay, it dose-dependently reduces the sliding velocity of actin filaments. Thus, it was found that the N-terminal part of cMyBP-C affects the kinetics of the myosin cross-bridge.


Assuntos
Actinas , Proteínas de Transporte , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas Cardíacas/metabolismo , Ligação Proteica/fisiologia , Miocárdio/metabolismo
4.
Ann Pharmacother ; 58(3): 273-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37329113

RESUMO

OBJECTIVE: To review the current literature on the efficacy and safety of cardiac myosin inhibitors (CMIs) for the treatment of hypertrophic cardiomyopathy (HCM). DATA SOURCES: A literature search was conducted on PubMed from origin to April 2023, using the search terms "MYK-461," "mavacamten," "CK-3773274," and "aficamten." Studies were limited to English-based literature, human subjects, and clinical trials resulting in the inclusion of 13 articles. ClinicalTrials.gov was also used with the same search terms for ongoing and completed trials. STUDY SELECTION AND DATA EXTRACTION: Only phase II and III studies were included in this review except for pharmacokinetic studies that were used to describe drug properties. DATA SYNTHESIS: CMIs enable cardiac muscle relaxation by decreasing the number of myosin heads that can bind to actin and form cross-bridges. Mavacamten, the first Food and Drug Administration (FDA)-approved drug in this class, has been shown to improve hemodynamic, functional, and quality of life measures in HCM with obstruction. In addition, aficamten is likely to become the next FDA-approved CMI with promising phase II data and an ongoing phase III trial expected to release results in the next year. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS: CMIs provide a novel option for obstructive hypertrophic cardiomyopathy, particularly in those not suitable for septal reduction therapy. Utilization of these agents requires knowledge of drug interactions, dose titration schemes, and monitoring parameters for safety and efficacy. CONCLUSIONS: CMIs represent a new class of disease-specific drugs for treatment of HCM. Cost-effectiveness studies are needed to delineate the role of these agents in patient therapy.


Assuntos
Cardiomiopatia Hipertrófica , Qualidade de Vida , Uracila/análogos & derivados , Estados Unidos , Humanos , Cardiomiopatia Hipertrófica/tratamento farmacológico , Benzilaminas/farmacocinética , Benzilaminas/uso terapêutico , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/uso terapêutico
5.
Cell Calcium ; 117: 102822, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101154

RESUMO

Hypertrophic cardiomyopathy (HCM), the most common inherited heart disease, is frequently caused by mutations in the ß-cardiac myosin heavy chain gene (MYH7). Abnormal calcium handling and diastolic dysfunction are archetypical features of HCM caused by MYH7 gene mutations. However, the mechanism of how MYH7 mutations leads to these features remains unclear, which inhibits the development of effective therapies. Initially, cardiomyocytes were generated from induced pluripotent stem cells from an eight-year-old girl diagnosed with HCM carrying a MYH7(C.1063 G>A) heterozygous mutation(mutant-iPSC-CMs) and mutation-corrected isogenic iPSCs(control-iPSC-CMs) in the present study. Next, we compared phenotype of mutant-iPSC-CMs to that of control-iPSC-CMs, by assessing their morphology, hypertrophy-related genes expression, calcium handling, diastolic function and myofilament calcium sensitivity at days 15 and 40 respectively. Finally, to better understand increased myofilament Ca2+ sensitivity as a central mechanism of central pathogenicity in HCM, inhibition of calcium sensitivity with mavacamten can improveed cardiomyocyte hypertrophy. Mutant-iPSC-CMs exhibited enlarged areas, increased sarcomere disarray, enhanced expression of hypertrophy-related genes proteins, abnormal calcium handling, diastolic dysfunction and increased myofilament calcium sensitivity at day 40, but only significant increase in calcium sensitivity and mild diastolic dysfunction at day 15. Increased calcium sensitivity by levosimendan aggravates cardiomyocyte hypertrophy phenotypes such as expression of hypertrophy-related genes, abnormal calcium handling and diastolic dysfunction, while inhibition of calcium sensitivity significantly improves cardiomyocyte hypertrophy phenotypes in mutant-iPSC-CMs, suggesting increased myofilament calcium sensitivity is the primary mechanisms for MYH7 mutations pathogenesis. Our studies have uncovered a pathogenic mechanism of HCM caused by MYH7 gene mutations through which enhanced myofilament calcium sensitivity aggravates abnormal calcium handling and diastolic dysfunction. Correction of the myofilament calcium sensitivity was found to be an effective method for treating the development of HCM phenotype in vitro.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Criança , Feminino , Humanos , Cálcio/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Miofibrilas/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
6.
Nature ; 623(7988): 863-871, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914933

RESUMO

The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-ß chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-ß chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.


Assuntos
Miosinas Cardíacas , Miocárdio , Sarcômeros , Conectina/química , Conectina/metabolismo , Conectina/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Miocárdio/química , Miocárdio/citologia , Miocárdio/ultraestrutura , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestrutura
7.
Nature ; 623(7988): 853-862, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914935

RESUMO

Pumping of the heart is powered by filaments of the motor protein myosin that pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly1. Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years2. Here we solve the structure of the main (cMyBP-C-containing) region of the human cardiac filament using cryo-electron microscopy. The reconstruction reveals the architecture of titin and cMyBP-C and shows how myosin's motor domains (heads) form three different types of motif (providing functional flexibility), which interact with each other and with titin and cMyBP-C to dictate filament architecture and function. The packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps to generate the cardiac super-relaxed state3; how titin and cMyBP-C may contribute to length-dependent activation4; and how mutations in myosin and cMyBP-C might disturb interactions, causing disease5,6. The reconstruction resolves past uncertainties and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.


Assuntos
Miosinas Cardíacas , Microscopia Crioeletrônica , Miocárdio , Humanos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestrutura , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Conectina/química , Conectina/metabolismo , Conectina/ultraestrutura , Miocárdio/química , Miocárdio/ultraestrutura
8.
Indian J Med Res ; 158(2): 119-135, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37787257

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease that frequently causes sudden cardiac death (SCD) among young adults. Several pathogenic mutations in genes encoding the cardiac sarcomere have been identified as diagnostic factors for HCM and proposed as prognostic markers for SCD. The objective of this review was to determine the scope of available literature on the variants encoding sarcomere proteins associated with SCD reported among Indian patients with HCM. The eligibility criteria for the scoping review included full text articles that reported the results of genetic screening for sarcomeric gene mutations in HCM patients of Indian south Asian ancestry. We systematically reviewed studies from the databases of Medline, Scopus, Web of Science core collection and Google Scholar. The electronic search strategy included a combination of generic terms related to genetics, disease and population. The protocol of the study was registered with Open Science Framework (https://osf.io/53gde/). A total of 19 articles were identified that reported pathogenic or likely pathogenic (P/LP) variants within MYH7, MYBPC3, TNNT2, TNNI3 and TPM1 genes, that included 16 singletons, one de novo and one digenic mutation (MYH7/ TPM1) associated with SCD among Indian patients. Evidence from functional studies and familial segregation implied a plausible mechanistic role of these P/LP variants in HCM pathology. This scoping review has compiled all the P/LP variants reported to-date among Indian patients and summarized their association with SCD. Single homozygous, de novo and digenic mutations were observed to be associated with severe phenotypes compared to single heterozygous mutations. The abstracted genetic information was updated with reference sequence ID (rsIDs) and compiled into freely accessible HCMvar database, available at https://hcmvar.heartfailure.org.in/. This can be used as a population specific genetic database for reference by clinicians and researchers involved in the identification of diagnostic and prognostic markers for HCM.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Humanos , Adulto Jovem , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/patologia , Coração , Mutação , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia
9.
J Mol Graph Model ; 124: 108576, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536231

RESUMO

The dosing and efficacy of chemotherapeutic drugs can be limited by toxicity caused by off-pathway reactions. One hypothesis for how such toxicity arises is via metal-catalyzed oxidative damage of cardiac myosin binding protein C (cMyBP-C) found in cardiac tissue. Previous research indicates that metal ion mediated reactive oxygen species induce high levels of protein carbonylation, changing the structure and function of this protein. In this work, we use long timescale all-atom molecular dynamics simulations to investigate the ion environment surrounding the C0 and C1 subunits of cMyBP-C responsible for actin binding. We show that divalent cations are co-localized with protein carbonylation-prone amino acid residues and that carbonylation of these residues can lead to site-specific interruption to the actin-cMyBP-C binding.


Assuntos
Actinas , Proteínas de Transporte , Actinas/química , Proteínas de Transporte/química , Proteína C/metabolismo , Ligação Proteica , Metais/metabolismo , Miosinas Cardíacas/metabolismo , Fosforilação
10.
Circulation ; 147(25): 1902-1918, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37128901

RESUMO

BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.


Assuntos
Insuficiência Cardíaca Sistólica , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica/fisiologia , RNA Mensageiro/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
11.
Biophys J ; 122(12): 2544-2555, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37165621

RESUMO

The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and nonmuscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin-filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin-filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin-filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations at both saturating and physiologically relevant subsaturating calcium concentrations, thin-filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for the modeling of cardiac physiology and diseases.


Assuntos
Cálcio , Miosinas Cardíacas , Miosinas Cardíacas/metabolismo , Cinética , Actinas/metabolismo , Miosinas/metabolismo , Trifosfato de Adenosina/metabolismo
12.
PLoS Comput Biol ; 19(5): e1011099, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200380

RESUMO

The druggability of small-molecule binding sites can be significantly affected by protein motions and conformational changes. Ligand binding, protein dynamics and protein function have been shown to be closely interconnected in myosins. The breakthrough discovery of omecamtiv mecarbil (OM) has led to an increased interest in small molecules that can target myosin and modulate its function for therapeutic purposes (myosin modulators). In this work, we use a combination of computational methods, including steered molecular dynamics, umbrella sampling and binding pocket tracking tools, to follow the evolution of the OM binding site during the recovery stroke transition of human ß-cardiac myosin. We found that steering two internal coordinates of the motor domain can recapture the main features of the transition and in particular the rearrangements of the binding site, which shows significant changes in size, shape and composition. Possible intermediate conformations were also identified, in remarkable agreement with experimental findings. The differences in the binding site properties observed along the transition can be exploited for the future development of conformation-selective myosin modulators.


Assuntos
Miosinas Cardíacas , Miosinas Ventriculares , Humanos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Ventriculares/química , Miosinas Ventriculares/metabolismo , Coração , Miocárdio/metabolismo , Miosinas/química , Ureia/metabolismo
13.
Sci Rep ; 13(1): 4101, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36907906

RESUMO

Myosin expression and purification is important for mechanistic insights into normal function and mutation induced changes. The latter is particularly important for striated muscle myosin II where mutations cause several debilitating diseases. However, the heavy chain of this myosin is challenging to express and the standard protocol, using C2C12 cells, relies on viral infection. This is time and work intensive and associated with infrastructural demands and biological hazards, limiting widespread use and hampering fast generation of a wide range of mutations. We here develop a virus-free method to overcome these challenges. We use this system to transfect C2C12 cells with the motor domain of the human cardiac myosin heavy chain. After optimizing cell transfection, cultivation and harvesting conditions, we functionally characterized the expressed protein, co-purified with murine essential and regulatory light chains. The gliding velocity (1.5-1.7 µm/s; 25 °C) in the in vitro motility assay as well as maximum actin activated catalytic activity (kcat; 8-9 s-1) and actin concentration for half maximal activity (KATPase; 70-80 µM) were similar to those found previously using virus based infection. The results should allow new types of studies, e.g., screening of a wide range of mutations to be selected for further characterization.


Assuntos
Células Musculares , Células Musculares/metabolismo , Transfecção , Vetores Genéticos , Coração , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular
14.
J Gen Physiol ; 155(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633586

RESUMO

Following binding to the thin filament, ß-cardiac myosin couples ATP-hydrolysis to conformational rearrangements in the myosin motor that drive myofilament sliding and cardiac ventricular contraction. However, key features of the cardiac-specific actin-myosin interaction remain uncertain, including the structural effect of ADP release from myosin, which is rate-limiting during force generation. In fact, ADP release slows under experimental load or in the intact heart due to the afterload, thereby adjusting cardiac muscle power output to meet physiological demands. To further elucidate the structural basis of this fundamental process, we used a combination of cryo-EM reconstruction methodologies to determine structures of the human cardiac actin-myosin-tropomyosin filament complex at better than 3.4 Å-resolution in the presence and in the absence of Mg2+·ADP. Focused refinements of the myosin motor head and its essential light chains in these reconstructions reveal that small changes in the nucleotide-binding site are coupled to significant rigid body movements of the myosin converter domain and a 16-degree lever arm swing. Our structures provide a mechanistic framework to understand the effect of ADP binding and release on human cardiac ß-myosin, and offer insights into the force-sensing mechanism displayed by the cardiac myosin motor.


Assuntos
Actinas , Tropomiosina , Humanos , Actinas/metabolismo , Tropomiosina/metabolismo , Miosinas Cardíacas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo
15.
Cell Biol Toxicol ; 39(1): 145-163, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35870039

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) hold great potential in the cardiovascular field for human disease modeling, drug development, and regenerative medicine. However, multiple hurdles still exist for the effective utilization of hiPSC-CMs as a human-based experimental platform that can be an alternative to the current animal models. To further expand their potential as a research tool and bridge the translational gap, we have generated a cardiac-specific hiPSC reporter line that differentiates into fluorescent CMs using CRISPR-Cas9 genome editing technology. The CMs illuminated with the mScarlet fluorescence enable their non-invasive continuous tracking and functional cellular phenotyping, offering a real-time 2D/3D imaging platform. Utilizing the reporter CMs, we developed an imaging-based cardiotoxicity screening system that can monitor distinct drug-induced structural toxicity and CM viability in real time. The reporter fluorescence enabled visualization of sarcomeric disarray and displayed a drug dose-dependent decrease in its fluorescence. The study also has demonstrated the reporter CMs as a biomaterial cytocompatibility analysis tool that can monitor dynamic cell behavior and maturity of hiPSC-CMs cultured in various biomaterial scaffolds. This versatile cardiac imaging tool that enables real time tracking and high-resolution imaging of CMs has significant potential in disease modeling, drug screening, and toxicology testing.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/farmacologia , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/farmacologia
16.
Biophys J ; 122(1): 54-62, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451546

RESUMO

The development of small molecule myosin modulators has seen an increased effort in recent years due to their possible use in the treatment of cardiac and skeletal myopathies. Omecamtiv mecarbil (OM) is the first-in-class cardiac myotrope and the first to enter clinical trials. Its selectivity toward slow/beta-cardiac myosin lies at the heart of its function; however, little is known about the underlying reasons for selectivity to this isoform as opposed to other closely related ones such as fast-type skeletal myosins. In this work, we compared the structure and dynamics of the OM binding site in cardiac and in fasttype IIa skeletal myosin to identify possible reasons for OM selectivity. We found that the different shape, size, and composition of the binding pocket in skeletal myosin directly affects the binding mode and related affinity of OM, which is potentially a result of weaker interactions and less optimal molecular recognition. Moreover, we identified a side pocket adjacent to the OM binding site that shows increased accessibility in skeletal myosin compared with the cardiac isoform. These findings could pave the way to the development of skeletal-selective compounds that can target this region of the protein and potentially be used to treat congenital myopathies where muscle weakness is related to myosin loss of function.


Assuntos
Coração , Miosinas , Miosinas/metabolismo , Miocárdio/metabolismo , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Domínios Proteicos , Ureia/metabolismo
17.
J Biol Chem ; 299(1): 102657, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334627

RESUMO

Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac ß-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac ß-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.


Assuntos
Miosinas Cardíacas , Músculo Esquelético , Cadeias Pesadas de Miosina , Animais , Humanos , Mamíferos/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
18.
Biochemistry (Mosc) ; 87(11): 1260-1267, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36509720

RESUMO

The effects of cardiomyopathic mutations E56G, M149V, and E177G in the MYL3 gene encoding essential light chain of human ventricular myosin (ELCv), on the functional properties of cardiac myosin and its isolated head (myosin subfragment 1, S1) were investigated. Only the M149V mutation upregulated the actin-activated ATPase activity of S1. All mutations significantly increased the Ca2+-sensitivity of the sliding velocity of thin filaments on the surface with immobilized myosin in the in vitro motility assay, while mutations E56G and M149V (but not E177G) reduced the sliding velocity of regulated thin filaments and F-actin filaments almost twice. Therefore, despite the fact that all studied mutations in ELCv are involved in the development of hypertrophic cardiomyopathy, the mechanisms of their influence on the actin-myosin interaction are different.


Assuntos
Miosinas Cardíacas , Miosinas , Humanos , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Miosinas/genética , Miosinas/metabolismo , Actinas/genética , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Mutação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo
19.
J Gen Physiol ; 154(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327149

RESUMO

Classically, striated muscle contraction is initiated by calcium (Ca2+)-dependent structural changes in regulatory proteins on actin-containing thin filaments, which allow the binding of myosin motors to generate force. Additionally, dynamic switching between resting off and active on myosin states has been shown to regulate muscle contractility, a recently validated mechanism by novel myosin-targeted therapeutics. The molecular nature of this switching, however, is not understood. Here, using a combination of small-angle x-ray fiber diffraction and biochemical assays with reconstituted systems, we show that cardiac thick filaments are directly Ca2+-regulated. We find that Ca2+ induces a structural transition of myosin heads from ordered off states close to the thick filament to disordered on states closer to the thin filaments. Biochemical assays show a Ca2+-induced transition from an inactive super-relaxed (SRX) state(s) to an active disordered-relaxed (DRX) state(s) in synthetic thick filaments. We show that these transitions are an intrinsic property of cardiac myosin only when assembled into thick filaments and provide a fresh perspective on nature's two orthogonal mechanisms to regulate muscle contraction through the thin and the thick filaments.


Assuntos
Cálcio , Miosinas Cardíacas , Cálcio/metabolismo , Miosinas Cardíacas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo
20.
J Am Heart Assoc ; 11(18): e026292, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36073642

RESUMO

Background Human cardiac biopsies are widely used in clinical and fundamental research to decipher molecular events that characterize cardiac physiological and pathophysiological states. One of the main approaches relies on the analysis of semiquantitative immunoblots that reveals alterations in protein expression levels occurring in diseased hearts. To maintain semiquantitative results, expression level of target proteins must be standardized. The expression of HKP (housekeeping proteins) is commonly used to this purpose. Methods and Results We evaluated the stability of HKP expression (actin, ß-tubulin, GAPDH, vinculin, and calsequestrin) and total protein staining within control (coefficient of variation) and comparatively with ischemic human heart biopsies (P value). All HKP exhibited a high level of intragroup (ie, actin, ß-tubulin, and GAPDH) and/or intergroup variability (ie, GAPDH, vinculin, and calsequestrin). Among all, we found total protein staining to exhibit the highest degree of stability within and between groups, which makes this reference the best to study protein expression level in human biopsies from ischemic hearts and age-matched controls. In addition, we illustrated that using an inappropriate reference protein marker misleads interpretation on SERCA2 (sarco/endoplasmic reticulum Ca2+ ATPase) and cMyBPC (cardiac myosin binding protein-C) expression level after myocardial infarction. Conclusions These reemphasize the need to standardize the level of protein expression with total protein staining in comparative immunoblot studies on human samples from control and diseased hearts.


Assuntos
Actinas , Calsequestrina , Miosinas Cardíacas , Isquemia , Actinas/metabolismo , Biópsia , Miosinas Cardíacas/metabolismo , Grupos Controle , Humanos , Tubulina (Proteína)/metabolismo , Vinculina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...